您好,欢迎访问

商机详情 -

智慧消防AI智能明火识别

来源: 发布时间:2024年11月12日

在这些小型飞行器自主避障飞行中,算法的性能很关键,他能帮助规划路线,识别障碍物。为了满足这样小型化飞行器的需求,成都慧视开发了同样是小型化体积的AI图像处理板Viztra-LE026,这块板卡采用了瑞芯微高性能芯片RV1126,体积小、功耗低,用在小型无人机上不会过多增加其负担。而4和处理器,支持INT8和INT16,能够输出比较大2.0TOPS的算力,足以满足在复杂环境中快速进行识别检测。

此外,成都慧视推出的深度学习算法开发平台还能够针对算法进行模型训练,通过大量的训练来提升算法性能。 人工标注仍然是必要的。智慧消防AI智能明火识别

AI智能

在智慧林河长制的建设中,无人机吊舱很重要,无人机吊舱可以内置图像处理传感器,进行高空目标识别、检测、锁定跟踪等功能。慧视光电开发的VIZ-100T三轴三光目标定位吊舱集成了10倍光学变倍可见光相机,640×512高分辨率红外相机,测程1.2km半导体激光测距机,以及三轴高稳定精度平台框架,能够实现昼夜工作,可远距离采集林、河图像,对可疑点位进行定位,然后实时输出1080P全高清可见光、红外视频。通过搭载慧视光电的无人机吊舱,能够很好地辅助有关单位进行林河维护。湖北电力运维AI智能口罩识别在机器学习中,模型部署是将机器学习模型集成到现有生产环境中的过程。

智慧消防AI智能明火识别,AI智能

YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被***用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到端目标检测能力,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。据悉,YOLOv10在各种模型规模上都实现了SOTA性能和效率。例如,YOLOv10-S在COCO上的类似AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOP大幅减少。与YOLOv9-C相比,在性能相同的情况下,YOLOv10-B的延迟减少了46%,参数减少了25%。

今年各地陆陆续续出现大范围的强降雨,不少城市更是出现内涝的情况,而乡镇农村更是洪峰过境。突然降临的洪水内涝让受灾地不少人被困,同时也给防汛救援造成了不小的难题,为了尽可能节约救援时间,增加搜救率,前期的信息收集工作十分重要。这项工作交给无人机是当下比较高效的解决方案。无人机便捷灵活,能够轻松到达许多内涝区域搜集信息。搭载光电吊舱则能够实时回传现场画面,不少吊舱具备红外和可见光双光成像的能力,夜间工作也能够清晰成像。除了搜集洪水信息,无人机还可以通过智能化吊舱实现AI智能识别,例如高空飞行作业的无人机通过盘旋扫描,能够识别是否存在被困人员,识别被困人员数量。从而展开精细的救援转移,保障人民生命财产安全。机器人是AI发展后的一个重要载体。

智慧消防AI智能明火识别,AI智能

这个过程中,如何让无人机理解并提取分析图像很关键,这就需要高精尖的目标识别算法。成都慧视开发的AI智能算法分析是一种计算机的“分析”和“识别”技术,是一种计算机“视觉”科技,也就是把摄像机当作人的“眼睛”,智能设备终端作为人的“大脑”,让视频系统具有人一样的判断危险或者其他特殊情况发生的能力。图像处理板和这样的目标识别算法的合力之下,就可实时对目标进行识别或者人为的的锁定,同时可以根据输出目标的靶量信息,对目标进行实时跟踪。这就是无人机实现智能识别的一种高效方法,通过实时的目标识别处理无人机获取的数据,让无人机的工作更加高效。无论是用于图像分类、目标检测还是语义分割,长期以来人工标记的数据集一直是监督学习的基础。河南安防AI智能厂家

深度学习是神经网络和机器学习的进化,是人工智能社区的创意。智慧消防AI智能明火识别

如今,AI已走入万千企业,其展现出的强大赋能作用,让无数企业受益。尤其实在制造业中,AI能够赋能多个领域,让企业更加高效、更加节能。例如许多大型的纺织工厂,定期的机器巡检以及对产品的质检至关重要。传统模式是采用人工巡检,大量的巡检人员对纺织机器和产品进行肉眼质检,虽然这种模式效率低、精度无法掌握,但也是无赖之举。随着AI的发展应用,利用AI进行质检,能够弥补了这些缺陷。通过定制相应的AI算法,在传感器的共同作用下,能够实现自动识别。智慧消防AI智能明火识别