巡检机器人能够实现抵近待测设备,进行精细的测温、测量以及感应。同时具备自主导航、实时避障功能,能够智能规划比较好巡检路径、规避站内检修区域,效率是人工的好几倍,并且还不会出现传统人工巡检造成人身危害等行为。这种机器人搭载的图像处理板可以自由选择,例如成都慧视开发的Viztra-HE030图像处理板,就可以很好的应用在电力巡检领域,这块板卡采用了瑞芯微全新一代旗舰芯片RK3588,采用8nmLP制程,四大四小八核处理器;搭载八核64位CPU,主频高达2.4GHz;集成ARMMali-G610MP4四核GPU,内置AI加速器NPU,算力高达6.0TOPS。用在电力巡检领域完全可以满足需求,并且成都慧视可以根据使用场景进行外壳的特殊化定制,有效处理散热防水,为机器人的户外工作提供更加稳定的处理能力。我国今年也把“人工智能+”写入了工作报告。河南研发AI智能
随着AI的快速发展,对应的软硬件也得到了快速的普及,苹果公司已经推出了新一代的具有AI功能的系列产品,Intel也推出了具有AI能力的新一代芯片。无论是无人机用吊舱产品还是边海防用转台产品,如果前端没有具有AI能力的图像处理板卡或智能跟踪设备,没有高性能的AI算法,很难在激烈的竞争中获得优势。特别是针对一些特定场景或特定目标的检测跟踪性能提升,图像算法工程师的压力与日俱增。按照传统的做法,需要经过数据采集、人工标注、模型训练、模型部署、效果评估等流程。云南边海防AI智能提供商数据的资源越好,模型的准确度就越高。
AI的出现可以很好地解决这个问题。针对于这样的环境需求,成都慧视推出了基于瑞芯微平台的深度学习算法开发平台SpeedDP,它是一款入门级的AI开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能,提供丰富的算法参数设置接口,满足不同用户业务场景的定制化需求。经过前期的需求分析,大量的数据训练,SpeedDP就能够生成适合行业需求的训练模型,通过这个模型,就能不断进行自动化的图像标注。
无人机被广泛应用于目标跟踪,其机动灵活的特点对地面的被跟踪对象而言简直就是降维打击。搭载摄像头以及传感器等设备后,无人机可以实现自主飞行,然后通过植入高精度的AI目标跟踪算法,就能够分析摄像头范围内的物体,通过AI对特征的进一步提取分析,就能够单独识别出目标物体形状,并锁定其位置。这种技术可以用于各种领域的信息侦查、监视、打击等任务,比传统的人工模式更安全更高效。要想实现这样的技术,可以通过在无人机中安装光电吊舱,然后在吊舱中植入高性能的AI图像处理板,通过算法的赋能就能够实现。人工智能Artificial Intelligence、机器学习Machine Learning和深度学习Deep Learning通常可以互换使用。
要解决小目标难以追踪的这个难题,慧视光电的算法工程师给出了小目标识别算法的方案,通过加强目标特征、数据增广、放大输入图像、使用高分辨率的特征、设计合适的标签分配方法,以让小目标有更多的正样本、利用小目标所处的环境信息或者其他容易检测的物体之间的关系来辅助小目标的检测。此外,利用自研的深度学习算法开发平台,通过不断的深度学习,能够让AI更加精细的识别目标。这个方法在瑞芯微RK3588、RV1126、RK3399pro等系列图像跟踪板上得到了较好地验证。因此,将这个算法用在无人机高空识别领域,完全能够弥补传统算法的不足,达到更加稳定锁定跟踪的目的。用SpeedDP进行图像标注可以省下许多人力成本。慧视光电AI智能应用
AI可以进行快速的海量图像数据的标注。河南研发AI智能
今年各地陆陆续续出现大范围的强降雨,不少城市更是出现内涝的情况,而乡镇农村更是洪峰过境。突然降临的洪水内涝让受灾地不少人被困,同时也给防汛救援造成了不小的难题,为了尽可能节约救援时间,增加搜救率,前期的信息收集工作十分重要。这项工作交给无人机是当下比较高效的解决方案。无人机便捷灵活,能够轻松到达许多内涝区域搜集信息。搭载光电吊舱则能够实时回传现场画面,不少吊舱具备红外和可见光双光成像的能力,夜间工作也能够清晰成像。除了搜集洪水信息,无人机还可以通过智能化吊舱实现AI智能识别,例如高空飞行作业的无人机通过盘旋扫描,能够识别是否存在被困人员,识别被困人员数量。从而展开精细的救援转移,保障人民生命财产安全。河南研发AI智能