虽然目前AI还没有那么让我们满意,但是在许多领域,当前的AI发展程度已经完全能够替代人工,胜任一些工作,图像标注就是其中之一。在人工智能、大数据分析、自动驾驶等行业都需要进行大量的图像标注工作,这些相关企业要么自己搭建团队,要么寻找外面的公司,于是就产生了大量的图像标注师岗位,这些岗位薪酬大都在4-6K之间,随着岗位数量的增多,成本也不断增加。对于专业的图像标注公司而言,有着源源不断的任务,那么这些图像标注师几乎不可能出现空挡时间,而对于有图像标注需求,但是这些需求并不持久、或者说断断续续,那么在这个空隙时间内,图像标注师就是一个闲职,产生的成本将是一个负担。SpeedDP整体安全性很高。山西智慧工地AI智能服务平台
目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的主要问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域相当有有挑战性的问题。随着深度学习的不断发展,目标检测的应用愈加广,现已被应用于农业、交通和医学等众多领域。与基于特征的传统手工方法相比,基于深度学习的目标检测方法可以学习低级和高级图像特征,有更好的检测精度和泛化能力深度学习AI智能监控采用SpeedDP一劳永逸。
随着技术的不断迭代发展,人工智能应用已潜移默化的深入到人们的日常生活中,智能图片搜索、人脸识别、指纹识别、扫码支付、视觉工业机器人、辅助驾驶等图像视频识别产品正在深刻改变着传统行业。而这些功能实现的背后,都要依赖于人工智能数据的标注。但是如果遇到数据量庞大的标注需求,传统的人工标注就显得费时费力,会影响整个项目的进度。慧视SpeedDP是针对AI零基础用户的低门槛AI开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。SpeedDP提供丰富的算法参数设置接口,满足不同用户业务场景的定制化需求。此外,慧视SpeedDP开发平台支持本地化服务器部署,数据敏感的用户也无需担心数据信息泄露的问题。
我们教一个小孩识物的时候,比如“苹果”,首先要让他反复的看到“苹果”,他便能认识“苹果”;他可能会认错,把“梨”认成“苹果”,这个时候应该帮他指出来。小孩看到的“苹果”越多,辨识的能力就越强。基于深度神经网络的人工智能,让机器具备理解的能力,基本过程就像教一个小孩认苹果一样。首先要有大量的数据,比如“苹果”的图片;同时,要增加大量机器会认错的“负样本”,比如“梨”的图片;然后经过一个深度神经网络,反复学习,然后获得一个有效的识别模型。对于快消商品的识别,我们不仅要认出一个瓶子包装,还要认出是一瓶酸奶还是啤酒;不仅要认出酸奶,还要认出是哪个品牌的酸奶,甚至是哪个口味和规格。要让机器能够准确识别成千上万的快消商品SKU,是一项极其庞大而复杂的AI工程。AI热潮下,越先使用AI图像标注越能获益。
随着无人机在城市管理领域的大规模应用,采用无人机追踪地面车辆,然后配合地面拦截,成为一道风景线。让无人机搭载光电吊舱起飞,就能够通过无人机实现视频实时传输,远距离追踪车辆,实时上传记录位置,帮助地面执勤提升拦截效率。慧视VIZ-YWT201微型双光吊舱,集成了可见光摄像机、红外热像仪等传感器,能够对地面车辆进行昼夜观察、识别、捕获和跟踪,并及时上报目标的图像和坐标信息。除此之外,无人机还可以实现智能化追踪。通过在无人机光电吊舱中植入高性能的AI图像处理板,这些板卡在目标跟踪算法的赋能下,就能够对目标车辆进行锁定跟踪,即便是车辆短时间内收到视野阻挡,在车辆后续出现时,也能够立即锁定。这就是成都慧视开发的Viztra-HE030图像处理板。该板卡采用了瑞芯微高性能芯片RK3588,八核处理器能够输出6.0TOPS算力,可实时对目标进行识别或者人为的的锁定,同时可以根据输出目标的靶量信息,对目标进行实时跟踪。深度学习是神经网络和机器学习的进化,是人工智能社区的创意。贵州电力巡检AI智能视觉
无论是用于图像分类、目标检测还是语义分割,长期以来人工标记的数据集一直是监督学习的基础。山西智慧工地AI智能服务平台
我国作为世界上邻国**多、边境线长的国家之一,拥有长达2.2万公里的边境线。很多不法分子常常利用边境复杂环境的特点进行非法偷渡,复杂的边境环境给我们的边防安防造成了极大的阻碍,但是即使面对这样的环境,边境安防也不可松懈。随着技术的发展,边境安防的模式也在不断进步,以往,我们都是依靠边境安防警察夜以继日的巡逻,漫长的边境线让我们的边境警察难以实现全覆盖。如今,随着边境安防系统的逐步建立,更加高效,更加省力的特点,让边境安防事半功倍。山西智慧工地AI智能服务平台