您好,欢迎访问

商机详情 -

甘肃慧视光电AI智能目标跟踪

来源: 发布时间:2024年06月11日

除了高质量数据集产品外,凤凰数据还将推出以数据为中心的一站式AI训练平台,计划于近期开放内测。平台将与高质量数据集市实现互联互通,确保数据在平台内的安全使用。平台也将提供一系列以数据为中心的服务,包括丰富的数据处理工具、可视化模型训练和微调套件、大量的数据和模型评估框架和多云异构的算力资源。在内地,也有很多企业开发了类似平台,慧视光电推出的AI自动图像标注平台SpeedDP就是一个以数据为中心的一站式AI训练平台,通过平台能够让AI不断进行学习,进而更加精确的识别图像。慧视RV1126图像处理板能实现24小时、无间隙信息化监控。甘肃慧视光电AI智能目标跟踪

AI智能

在进行目标识别跟踪时,OSD字符能够帮助使用者更加清晰的看到识别跟踪的效果,OSD字符叠加是目标跟踪领域一个重要的部分,它能够将各种图像文本添加到视频当中,实现字符与视频的叠加,进而辅助进行目标检测、跟踪的识别,便于观察目标。经过多年技术积累及更新迭代,以及客户对OSD字符叠加的需求整理,我们将OSD拆分为多个组件,包括文字,角度显示刻度线,矩形框,圆,多边形,指北针等组件,可灵活设置位置、字号、颜色等属性,为用户定制OSD提供方便。陕西专业AI智能供应商人工智能和机器学习为建筑行业转型提供了巨大潜力。

甘肃慧视光电AI智能目标跟踪,AI智能

目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的主要问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域相当有有挑战性的问题。随着深度学习的不断发展,目标检测的应用愈加广,现已被应用于农业、交通和医学等众多领域。与基于特征的传统手工方法相比,基于深度学习的目标检测方法可以学习低级和高级图像特征,有更好的检测精度和泛化能力

我国作为世界上邻国**多、边境线长的国家之一,拥有长达2.2万公里的边境线。很多不法分子常常利用边境复杂环境的特点进行非法偷渡,复杂的边境环境给我们的边防安防造成了极大的阻碍,但是即使面对这样的环境,边境安防也不可松懈。随着技术的发展,边境安防的模式也在不断进步,以往,我们都是依靠边境安防警察夜以继日的巡逻,漫长的边境线让我们的边境警察难以实现全覆盖。如今,随着边境安防系统的逐步建立,更加高效,更加省力的特点,让边境安防事半功倍。人工智能和机器学习技术,还可以帮助提高建筑工地的安全性并降低风险。

甘肃慧视光电AI智能目标跟踪,AI智能

YOLO(You Only Look Once)是一种目标检测算法,它使用深度神经网络模型,特别是卷积神经网络,来实时检测和分类对象。该算法开始被提出是在2016年的论文《You Only Look Once:统一的实时目标检测》中。自发布以来,由于其高准确性和速度,YOLO已成为目标检测和分类任务中很受欢迎的算法之一。它在各种目标检测基准测试中实现了高性能。就在2023年5月初,YOLO-NAS模型被引入到机器学习领域,它拥有更高的精度和速度,超越了其他模型如YOLOv7和YOLOv8。SpeedDP整体安全性很高。甘肃慧视光电AI智能目标跟踪

AI可以进行快速的海量图像数据的标注。甘肃慧视光电AI智能目标跟踪

图像识别方法可以分为两大类,模型方法和搜索方法。模型方法是在业界研究和使用比较多的方法。模型的方法是试图通过一些已知“标签”的图像,通过机器学习的各种方法来学习一个描述这些标签的“模型”,从而,对于一个新的未知图像,经过这个模型判断出其应该具有的标签。基于搜索的方法是在大数据时代才出现的方法,其基础是将已知标签的图像数据建成一个可以进行高效率检索的数据库,称为图像索引。通常需要大量的图像来建索引,但图像的标签可以有少量的噪声。那么,对一副待测图像,我们到这个数据库中去找与其相同或者相似的若干图像,然后综合这些图像的标签来预测待测图像的标签。甘肃慧视光电AI智能目标跟踪