基于以上强烈的市场需求,成都慧视光电技术有限公司推出了SpeedDP深度学习算法开发平台,该平台是一款专门针对AI零基础用户的低门槛AI开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。SpeedDP深度学习算法开发平台提供丰富的算法参数设置接口,满足不同用户业务场景的定制化需求。此外,慧视光电SpeedDP深度学习算法开发平台支持本地化服务器部署,数据敏感或对数据有保密需求的用户再也无需担心数据信息泄露的问题。目前慧视光电SpeedDP深度学习算法开发平台主要提供目标检测算法的开发功能,不同的用户可针对自己的业务场景进行AI算法的定制化开发以及算法模型的快速迭代优化。RK3588图像处理板是我司自主研发的目标跟踪板,该板卡采用国产高性能CPU,搭载自研目标检测及跟踪算法。陕西智慧消防AI智能人脸识别
传统摄像头通过AI算法的赋能,可以对目标区域内的事物进行自动识别、检测、跟踪。例如,搭载于无人机的吊舱,在AI智能算法的加持下,就能锁定跟踪路面快速移动的汽车。AI智能算法分析是一种计算机的“分析”和“识别”技术,作为一种计算机“视觉”科技,可以让摄像头当作人的“眼睛”,智能设备终端作为人的“大脑”,让视频监控系统具有人一样的判断危险或者其他特殊情况发生的能力。通过大量的数据进行训练,AI智能算法能够不断进步,从而更加符合使用者的期望。这种技术能够广泛应用于我们的各行各业。陕西电力巡检AI智能目标跟踪人工智能和机器学习可以帮助施工团队更有效地管理资源,从而节省成本。
在图像识别系统中利用神经网络系统,一般会先提取图像的特征,再利用图像所具有的特征映射到神经网络进行图像识别分类。以汽车拍照自动识别技术为例,当汽车通过的时候,汽车自身具有的检测设备会有所感应。此时检测设备就会启用图像采集装置来获取汽车正反面的图像。获取了图像后必须将图像上传到计算机进行保存以便识别。然后车牌定位模块就会提取车牌信息,对车牌上的字符进行识别并显示结果。在对车牌上的字符进行识别的过程中就用到了基于模板匹配算法和基于人工神经网络算法。
目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的主要问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域相当有有挑战性的问题。随着深度学习的不断发展,目标检测的应用愈加广,现已被应用于农业、交通和医学等众多领域。与基于特征的传统手工方法相比,基于深度学习的目标检测方法可以学习低级和高级图像特征,有更好的检测精度和泛化能力AI算法赋能下的图像处理板能够进行目标识别。
对进销存、订货、选品、商业选址都很有帮助。大数据预测的算法会根据近几年的数据,加上天气、节日、时间段的影响,机器就可以处理进销存的订货、研究用户的消费行为,对未来的选品和定价都非常有帮助。图像识别、声音识别、数字化人工智能算法三大技术只能搭起机器识别的骨架,但如何让零售变的更加智能,还需要更深层次的技术做支持,如何在表层技术的基础上进行更深层次的剖析,是现在智能零售业急需解决的问题,下面我们就智能零售中运用比较多的技术——图像识别技术进行简要的解析。SpeedDP采用本地化服务器部署的方式。西藏智慧交通AI智能分析软件
无论是用于图像分类、目标检测还是语义分割,长期以来人工标记的数据集一直是监督学习的基础。陕西智慧消防AI智能人脸识别
在进行目标识别跟踪时,OSD字符能够帮助使用者更加清晰的看到识别跟踪的效果,OSD字符叠加是目标跟踪领域一个重要的部分,它能够将各种图像文本添加到视频当中,实现字符与视频的叠加,进而辅助进行目标检测、跟踪的识别,便于观察目标。经过多年技术积累及更新迭代,以及客户对OSD字符叠加的需求整理,我们将OSD拆分为多个组件,包括文字,角度显示刻度线,矩形框,圆,多边形,指北针等组件,可灵活设置位置、字号、颜色等属性,为用户定制OSD提供方便。陕西智慧消防AI智能人脸识别