慧视光电推出的SpeedDP深度学习算法开发平台支持labelimg数据标注格式,用户采集得到图像数据后使用labelimg工具进行数据标注,然后将图像文件和标注文件按如图2所示指定的形式存放即可直接用于模型训练。一般不同的业务场景需求对应不同的数据和算法参数设置,慧视SpeedDP深度学习算法开发平台采用项目配置的方式来对不同的业务需求进行管理。采集数据后,能够批量加载一定数量的数据并进行合并后输入模型,实时显示训练记录,并能以文件的形式保存运行时训练参数。RK3399图像处理板识别概率超过85%。湖北智慧园区AI智能
OLO系列算法目前更新到YOLOv8。Yolo系列算法是典型的onestage算法,同样,在算法设计上也注重目标区域的检测以及特征的分类,这里目标区域的检测采用的是和图像区域分类定位的方式实现的。Yolo系列算法是一种比较成熟的目标检测算法框架,基于这种框架的算法还在不断地迭代中,当然解决的问题也越来越细化,比如候选区精度、比如小尺度检测等。基本上YoloV3及以上版本的算法可以在很多场景下得到现实应用。2023 年 1 月,目标检测经典模型 YOLO 系列再添一个新成员 YOLOv8,这是 Ultralytics 公司继 YOLOv5 之后的又一次重大更新。YOLOv8 一经发布就受到了业界的广关注,成为了这几天业界的流量担当。江西图像识别AI智能提供商SpeedDP是一个辅助型图像标注工具。
YOLO(You Only Look Once)是一种目标检测算法,它使用深度神经网络模型,特别是卷积神经网络,来实时检测和分类对象。该算法开始被提出是在2016年的论文《You Only Look Once:统一的实时目标检测》中。自发布以来,由于其高准确性和速度,YOLO已成为目标检测和分类任务中很受欢迎的算法之一。它在各种目标检测基准测试中实现了高性能。就在2023年5月初,YOLO-NAS模型被引入到机器学习领域,它拥有更高的精度和速度,超越了其他模型如YOLOv7和YOLOv8。
设备故障使工业部门陷入瘫痪,导致重大生产损失和计划外停机。对于世界各地的加工制造商来说,这些损失每年高达数十亿美元。例如,一条关键的传送带在中途停止运行,可能会迫使整条工厂生产线闲置数小时,从而可能使整个供应链陷入困境。现在人工智能提供了一个突破性的解决方案。通过AI分析大量传感器数据,AI算法可以在故障和积压发生之前预测故障和积压,从而实现主动维修并大幅减少停机时间。但这还不是全部,AI还揭示了生产数据中隐藏的模式,优化了流程,减少了浪费,提高了整体效率。人工智能和机器学习可以帮助施工团队更有效地管理资源,从而节省成本。
随着大模型时代到来,模型参数呈指数级增长,达到万亿级别。大模型逐渐从支持单一模态和任务发展为支持多种模态下的多种任务。在这种趋势下,大模型训练所需算力巨大,远超单个芯片的处理速度,而多卡分布式训练通信损耗巨大。如何提高硬件资源利用率,成为影响国产大模型技术发展和实用性的重要前提。成都慧视推出的AI训练平台SpeedDP就可以通过大量的数据注入,让AI进行不断的模型训练,不断地深度学习能够让AI更加聪明,为目标检测、目标识别提供帮助。AI算法赋能下的图像处理板能够进行目标识别。重庆智慧工地AI智能算法分析
AI也能够进行图像标注。湖北智慧园区AI智能
人工智能为各行各业带来了产业变革,如工业4.0、无人驾驶等领域。但是对于一般中小企业而言,人工智能的开发需要投入大量的时间和金钱,包括长时间反复的深度学习模型训练、人才的培养、大量数据模型的采集标注,这些加起来的成本不可预估,并且很关键的一点是,所有的投入不一定会达到预期的效果。基于这样的行业痛点,慧视SpeedDP深度学习算法开发平台应运而生。通过提供丰富的算法参数设置接口,来满足不同用户业务场景的定制化需求。湖北智慧园区AI智能