工作原理,,与MEMS微振镜平动和扭转的形式不同,转镜是反射镜面围绕圆心不断旋转,从而实现激光的扫描。在转镜方案中,也存在一面扫描镜(一维转镜)和一纵一横两面扫描镜(二维转镜)两种技术路线。一维转镜线束与激光发生器数量一致,而二维转镜可以实现等效更多的线束,在集成难度和成本控制上存在优势。简而言之,使用转镜折射光线实现激光在FOV区域内的覆盖,通常与线光源配合使用,形成FOV面的覆盖,也可以与振镜组合使用,配合点光源形成FOV面的覆盖。在智能物流中引导 AGV 小车,提升货物搬运仓储效率。吉林测距激光雷达
新思科技提供的多个光学和光子学工具,可用于支持LiDAR的系统级和元件级设计:CODE V 光学设计软件,用于在LiDAR系统中设计光学接收系统。光学设计应用:在 LiDAR系统中优化接收器上的圈入能量。使用CODE V优化LiDAR中的接收光学系统,LightTools 照明设计软件能模拟雨滴、雾霾等大气环境对光信号探测造成的影响,并能获取返回光程数据以解决飞行时间计算问题。用于 LiDAR 和激光光源的功能。使用LightTools模拟LiDAR光学系统,Photonic Solutions光子方案模拟工具,能够对LiDAR系统中的多个组件进行优化设计。量子雷达激光雷达行价物流分拣依靠激光雷达引导机械臂,快速准确分拣货物。
有几个原因:我们这里说的激光雷达,是指 TOF 激光雷达,TOF 测距,靠的是 TDC 电路提供计时,用光速乘以单向时间得到距离,但限于成本,TDC 一般由 FPGA 的进位链实现,本质上是对一个低频的晶振信号做差值,实现高频的计数。所以,测距的精度,强烈依赖于这个晶振的精度。而晶振随着时间的推移,存在累计误差;距离越远,接收信号越弱,雷达自身的寻峰算法越难以定位到较佳接收时刻,这也造成了精度的劣化;而由于激光雷达检测障碍物的有效距离和较小垂直分辨率有关系,也就是说角度分辨率越小,则检测的效果越好。如果两个激光光束之间的角度为 0.4°,那么当探测距离为 200m 的时候,两个激光光束之间的距离为200m*tan0.4°≈1.4m。也就是说在 200m 之后,只能检测到高于 1.4m 的障碍物了。如果需要知道障碍物的类型,那么需要采用的点数就需要更多,距离越远,激光雷达采样的点数就越少,可以很直接的知道,距离越远,点数越少,就越难以识别准确的障碍物类型。
NDT 算法的基本思想是先根据参考数据(reference scan)来构建多维变量的正态分布,如果变换参数能使得两幅激光数据匹配的很好,那么变换点在参考系中的概率密度将会很大。然后利用优化的方法求出使得概率密度之和较大的变换参数,此时两幅激光点云数据将匹配的较好。由此得到位资变换关系。局部特征提取通常包括关键点检测和局部特征描述两个步骤,其构成了三维模型重建与目标识别的基础和关键。在二维图像领域,基于局部特征的算法已在过去十多年间取得了大量成果并在图像检索、目标识别、全景拼接、无人系统导航、图像数据挖掘等领域得到了成功应用。类似的,点云局部特征提取在近年来亦取得了部分进展Mid - 360可达70 米 @80% 反射率探测,适应室内外不同光照。
激光雷达按照测距方法可以分为飞行时间(TimeofFlight,ToF)测距法、基于相干探测FMCW测距法、以及三角测距法等,其中ToF与FMCW能够实现室外阳光下较远的测程(100~250m),是车载激光雷达的好选择方案。ToF是目前市场车载中长距激光雷达的主流方案,未来随着FMCW激光雷达整机和上游产业链的成熟,ToF和FMCW激光雷达将在市场上并存。根据激光雷达按测距方法分类:ToF法:通过直接测量发射激光与回波信号的时间差,基于光在空气中的传播速度得到目标物的距离信息,具有响应速度快、探测精度高的优势。FMCW法:将发射激光的光频进行线性调制,通过回波信号与参考光进行相干拍频得到频率差,从而间接获得飞行时间反推目标物距离。FMCW激光雷达具有可直接测量速度信息以及抗干扰(包括环境光和其他激光雷达)的优势。激光雷达在建筑施工中用于精确测量和定位。上海多线激光雷达渠道
激光雷达通过多角度扫描,获取目标的完整信息。吉林测距激光雷达
相比于半固态式和固态式激光雷达,机械旋转式激光雷达的优势在于可以对周围环境进行360°的水平视场扫描,而半固态式和固态式激光雷达往往较高只能做到120°的水平视场扫描,且在视场范围内测距能力的均匀性差于机械旋转式激光雷达。由于无人驾驶汽车运行环境复杂,需要对周围360°的环境具有同等的感知能力,而机械旋转式激光雷达兼具360°水平视场角和测距能力远的优势,目前主流无人驾驶项目纷纷采用了机械旋转式激光雷达作为主要的感知传感器。吉林测距激光雷达