天气湿度预测数据对社会有着重要的影响和意义。湿度预测数据对农业和食品生产至关重要。农作物的生长和发育受湿度影响,适宜的湿度条件有助于提高农作物产量和质量。通过湿度预测数据,农民可以更好地安排灌溉、施肥和农作物管理,以确保农作物得到适当的水分供应。湿度预测数据对于自然灾害的预警和应对至关重要。湿度预测数据也可以用于预测和监测干旱、风暴和台风等天气现象,提供及时的警报和指导。湿度对人体健康和舒适度有着重要影响。高湿度环境容易导致不适和健康问题。低湿度环境则可能导致皮肤干燥、喉咙痛和眼睛刺痛等问题。通过湿度预测数据,人们可以提前了解天气状况,采取相应的措施,以保持健康和舒适。湿度预测数据对能源管理也非常重要。湿度影响空调和加热系统的效率,高湿度会增加空调的负荷,低湿度则会增加加热系统的负荷。通过湿度预测数据,能源供应商和消费者可以更好地调整能源使用,提高能源利用效率,降低能源消耗和成本。综上所述,湿度预测数据对于社会的农业生产、自然灾害预警、健康和舒适度以及能源管理等方面具有重要的意义。它为决策者、农民、公众和企业提供了有价值的信息,帮助他们做出更明智的决策和行动。 羲和能源气象大数据平台由南京图德科技有限公司开发,于2022年2月上线运行。河北数据下载
地表辐射数据是指记录和测量地球表面接收和辐射出的能量的数据。这些数据对多个领域具有重要性:气候研究:地表辐射数据是研究气候变化和气候模型的重要输入。它们提供了地球表面的能量收支情况,帮助了解地球能量平衡的变化和影响气候的因素。太阳能利用:地表辐射数据对于太阳能利用非常重要。通过测量太阳辐射强度和分布,可以确定太阳能的可利用程度和潜在的太阳能发电量,为太阳能项目的规划和设计提供依据。农业和生态系统:地表辐射数据对于农业和生态系统的研究和管理也非常重要。它们可以帮助农民和生态学家了解地表温度、光合作用和蒸腾等过程,以优化农作物种植、水资源管理和生态保护。城市规划:地表辐射数据对于城市规划和建筑设计也具有重要意义。通过了解城市地表辐射状况,可以优化建筑设计,减少能源消耗,改善城市热环境,提高城市的可持续性。空气质量和环境监测:地表辐射数据可以用于监测大气中的污染物和颗粒物的扩散和传输。它们可以帮助评估空气质量,提供有关环境污染和健康风险的信息。总之,地表辐射数据在气候研究、太阳能利用、农业和生态系统、城市规划以及空气质量和环境监测等领域具有重要性,助于推动可持续发展和应对气候变化等全球挑战。 湖北降水数据哪里下载羲和能源大数据平台用户在风电方面,可以自由设置风机的风速/功率曲线,生成自定义的风机模型。
“碳达峰碳中和”的推进离不开森林植被和农作物的对碳的吸收。同样,森林资源类专业、农业发展与降水、气温、光照等气象数据联系紧密,海水、湖泊、湿地等对二氧化碳的固定能力也与气象条件高度相关。因此,开展农业、林业及地球大气、生态研究需要气象数据支撑,并以此为基础开展碳中和实施研究。由此可见,地理位置、精确到小时甚至分钟级的气象数据、风光发电数据、地理数据是高等院校、研究机构开展“碳中和”专业研究必需“数据原料”。羲和能源集成数据科研平台能够为高校师生提供全球历史任意位置历史40余和未来7日内预测的高精度、小时级多种气象数据,及以此为基准生成的风电、光伏发电功率数据。同时还可以提供气象数据图谱、风光资源图谱、气象演变动态展示、可再生能源发展量化评估等功能。同时还可以提供不同位置的地理信息数据。通过对数据的处理分析计算,平台还可以提供地区新能源资源分析、光伏倾角优化、光伏电站系统方案设计功能,能够支撑双碳相关“产学研”发展。
气象数据包含了多种信息,用于描述和记录天气和气候的各种要素。以下是一些常见的气象数据:温度:记录大气中的温度,通常以摄氏度或华氏度表示。湿度:描述大气中水蒸气的含量,通常以相对湿度的百分比表示。风速和风向:记录风的速度和方向,通常以米每秒或千米每小时表示。降水量:记录降水的量,包括雨、雪、冰雹等形式,通常以毫米或英寸表示。大气压力:记录大气压力,通常以帕斯卡或百帕表示。能见度:描述大气中可见物体的距离,通常以米或千米表示。云量和云类型:记录云的覆盖程度和类型,如层云、积云、卷云等。日照时数:记录太阳照射地表的时间,通常以小时为单位。雷暴和气象灾害:记录雷暴、龙卷风、暴风雨等极端天气事件的发生。气象观测站信息:包括观测站的位置、海拔高度、观测时间等。此外,还有一些特殊的气象数据,如辐射数据(太阳辐射、地表辐射等)、臭氧浓度、空气质量指数等,用于更详细地描述大气和环境的状况。这些气象数据通过气象观测站、卫星、雷达等设备进行收集和记录,并用于气象预测、气候研究、天气报告、环境监测等领域。羲和平台具有的庞大气象数据库可以满足用户对于上述气象数据获取的需求。 观测数据是通过气象观测站、卫星、雷达等设备收集的包括温度、湿度、气压、降水量等气象参数的实时数据。
目前全球数值天气预报领域处于“一超多强”的格局,“一超”是指欧洲中长期天气预报中心(ECMWF),“多强”则涵盖了NASA、德国气象局、英国气象局等多个气象机构。羲和能源大数据平台的数据均来自于国际上的“一超多强”,其数据经过了数十年的检验,具有当前全球优于同行的精度水平。欧洲中期天气预报中心(ECMWF):是一个包括34个国家支持的国际性组织,是当今全球独树一帜的国际性天气预报研究和业务机构。其前身为欧洲的一个科学与技术合作项目。德国气象局(DWD):德国气象局是欧洲三大气象局之一,位于德意志联邦共和国黑森州奥芬巴赫市。德国气象局提供短期及长期的气象及气候现象的监测、分析、预报等气象气候服务,这些服务主要应用于飞机船舶等交通领域及能源通信等基础设施领域,以实现安心安全的运行和运用。美国国家航空航天局(NASA)地球科学数据:美国国家航空航天局(NASA)地球科学数据和信息系统(ESDIS)项目是戈达德太空飞行中心飞行项目管理局下属地球科学项目部的一部分。作为ESDIS的关键组成部分,由美国单独设施的分布式网络运营12个互连的分布式活动档案中心(DAAC)。我们和众多数据库进行对比,如solargis等。 羲和平台通过定制API接口,自动读取用户所需数据,便于与其它平台、软件等数据协同。河北预测数据
羲和能源大数据平台支持用户进行自定义风机型号,通过新建特定型号的风力发电机组,并赋予参数。河北数据下载
大数据技术在气象预测和预警中具有重要的应用。大数据技术可以使用各种观测数据,如卫星遥感数据、雷达数据和地面观测数据,来训练和调整模型参数。通过数据驱动的方法,可以提高模型的逼真度和准确性。可以将不同的模型集成到一个统一的框架中,利用模型集成和融合的技术来提高预测的准确性和鲁棒性。通过将多个模型的输出进行组合和权衡,可以得到更可靠、有效的预测结果。通过不断迭代和调整,可以提高模型的适应能力和预测精度。实现实时数据的采集和处理,并将其快速反馈到模型中。这样可以保持模型与实际情况的一致性,提高预测的准确性和实用性。大数据分析可以对长期观测数据进行趋势分析,揭示气候变化的规律和趋势。通过分析历史数据,可以识别出气候变化的周期性和趋势性,为未来的气候预测提供参考依据。可以帮助发现不同气象变量之间的关联和相关性。通过分析大量的气象数据,可以确定某些变量之间存在的相互关系,例如温度与降雨量之间的关联。这些关联性分析可以帮助我们更好地理解气象现象,并利用已知变量来预测未知变量。 河北数据下载