您好,欢迎访问

商机详情 -

软件安全保护等级测评

来源: 发布时间:2025年05月01日

    将三种模态特征和三种融合方法的结果进行了对比,如表3所示。从表3可以看出,前端融合和中间融合较基于模态特征的检测准确率更高,损失率更低。后端融合是三种融合方法中较弱的,虽然明显优于基于dll和api信息、pe格式结构特征的实验结果,但稍弱于基于字节码3-grams特征的结果。中间融合是三种融合方法中**好的,各项性能指标都非常接近**优值。表3实验结果对比本实施例提出了基于多模态深度学习的恶意软件检测方法,提取了三种模态的特征(dll和api信息、pe格式结构信息和字节码3-grams),提出了通过三种融合方式(前端融合、后端融合、中间融合)集成三种模态的特征,有效提高恶意软件检测的准确率和鲁棒性。实验结果显示,相对**且互补的特征视图和不同深度学习融合机制的使用明显提高了检测方法的检测能力和泛化性能,其中较优的中间融合方法取得了%的准确率,对数损失为,auc值为,各项性能指标已接近**优值。考虑到样本集可能存在噪声,本实施例提出的方法已取得了比较理想的结果。由于恶意软件很难同时伪造多个模态的特征,本实施例提出的方法比单模态特征方法更鲁棒。以上所述*为本发明的较佳实施例而已,并非用于限定本发明的保护范围。第三方测评显示软件运行稳定性达99.8%,未发现重大系统崩溃隐患。软件安全保护等级测评

软件安全保护等级测评,测评

    坐标点(0,1)**一个完美的分类器,它将所有的样本都正确分类。roc曲线越接近左上角,该分类器的性能越好。从图9可以看出,该方案的roc曲线非常接近左上角,性能较优。另外,前端融合模型的auc值为。(5)后端融合后端融合的架构如图10所示,后端融合方式用三种模态的特征分别训练神经网络模型,然后进行决策融合,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器(optimizer)采用的是adagrad,batch_size是40。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,后端融合模型的准确率变化曲线如图11所示,模型的对数损失变化曲线如图12所示。从图11和图12可以看出,当epoch值从0增加到5过程中,模型的训练准确率和验证准确率快速提高,模型的训练对数损失和验证对数损失快速减少;当epoch值从5到50的过程中,前端融合模型的训练准确率和验证准确率小幅提高,训练对数损失和验证对数损失缓慢下降;综合分析图11和图12的准确率和对数损失变化曲线,选取epoch的较优值为40。确定模型的训练迭代数为40后,进行了10折交叉验证实验。西安市软件检测报告能耗评估显示后台服务耗电量超出行业基准值42%。

软件安全保护等级测评,测评

    比黑盒适用性广的优势就凸显出来了。[5]软件测试方法手动测试和自动化测试自动化测试,顾名思义就是软件测试的自动化,即在预先设定的条件下运行被测程序,并分析运行结果。总的来说,这种测试方法就是将以人驱动的测试行为转化为机器执行的一种过程。对于手动测试,其在设计了测试用例之后,需要测试人员根据设计的测试用例一步一步来执行测试得到实际结果,并将其与期望结果进行比对。[5]软件测试方法不同阶段测试编辑软件测试方法单元测试单元测试主要是对该软件的模块进行测试,通过测试以发现该模块的实际功能出现不符合的情况和编码错误。由于该模块的规模不大,功能单一,结构较简单,且测试人员可通过阅读源程序清楚知道其逻辑结构,首先应通过静态测试方法,比如静态分析、代码审查等,对该模块的源程序进行分析,按照模块的程序设计的控制流程图,以满足软件覆盖率要求的逻辑测试要求。另外,也可采用黑盒测试方法提出一组基本的测试用例,再用白盒测试方法进行验证。若用黑盒测试方法所产生的测试用例满足不了软件的覆盖要求,可采用白盒法增补出新的测试用例,以满足所需的覆盖标准。其所需的覆盖标准应视模块的实际具体情况而定。

    图2是后端融合方法的流程图。图3是中间融合方法的流程图。图4是前端融合模型的架构图。图5是前端融合模型的准确率变化曲线图。图6是前端融合模型的对数损失变化曲线图。图7是前端融合模型的检测混淆矩阵示意图。图8是规范化前端融合模型的检测混淆矩阵示意图。图9是前端融合模型的roc曲线图。图10是后端融合模型的架构图。图11是后端融合模型的准确率变化曲线图。图12是后端融合模型的对数损失变化曲线图。图13是后端融合模型的检测混淆矩阵示意图。图14是规范化后端融合模型的检测混淆矩阵示意图。图15是后端融合模型的roc曲线图。图16是中间融合模型的架构图。图17是中间融合模型的准确率变化曲线图。图18是中间融合模型的对数损失变化曲线图。图19是中间融合模型的检测混淆矩阵示意图。图20是规范化中间融合模型的检测混淆矩阵示意图。图21是中间融合模型的roc曲线图。具体实施方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例**是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。策科技助力教育行业:数字化教学的创新应用 。

软件安全保护等级测评,测评

    尝试了前端融合、后端融合和中间融合三种融合方法对进行有效融合,有效提高了恶意软件的准确率,具备较好的泛化性能和鲁棒性。实验结果显示,相对**且互补的特征视图和不同深度学习融合机制的使用明显提高了检测方法的检测能力和泛化性能,其中较优的中间融合方法取得了%的准确率,对数损失为,auc值为。有效解决了现有采用二进制可执行文件的单一特征类型进行恶意软件检测的检测方法检测结果准确率不高、可靠性低、泛化性和鲁棒性不佳的问题。另外,恶意软件很难同时伪造良性软件的多个抽象层次的特征以逃避检测,本发明实施例同时融合软件的二进制可执行文件的多个抽象层次的特征,可准确检测出伪造良性软件特征的恶意软件,解决了现有采用二进制可执行文件的单一特征类型进行恶意软件检测的检测方法难以检测出伪造良性软件特征的恶意软件的问题。附图说明为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图**是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1是前端融合方法的流程图。隐私合规检测确认用户数据加密符合GDPR标准要求。软件测试报告有哪些

深圳艾策信息科技:可持续发展的 IT 解决方案。软件安全保护等级测评

    置环境操作系统+服务器+数据库+软件依赖5执行用例6回归测试及缺陷**7输出测试报告8测试结束软件架构BSbrowser浏览器+server服务器CSclient客户端+server服务器1标准上BS是在服务器和浏览器都存在的基础上开发2效率BS中负担在服务器上CS中的客户端会分担,CS效率更高3安全BS数据依靠http协议进行明文输出不安全4升级上bs更简便5开发成本bs更简单cs需要客户端安卓和ios软件开发模型瀑布模型1需求分析2功能设计3编写代码4功能实现切入点5软件测试需求变更6完成7上线维护是一种线性模型的一种,是其他开发模型的基础测试的切入点要留下足够的时间可能导致测试不充分,上线后才暴露***开发的各个阶段比较清晰需求调查适合需求稳定的产品开发当前一阶段完成后,您只需要去关注后续阶段可在迭代模型中应用瀑布模型可以节省大量的时间和金钱缺点1)各个阶段的划分完全固定,阶段之间产生大量的文档,极大地增加了工作量。2)由于开发模型是线性的,用户只有等到整个过程的末期才能见到开发成果,从而增加了开发风险。3)通过过多的强制完成日期和里程碑来**各个项目阶段。4)瀑布模型的突出缺点是不适应用户需求的变化瀑布模型强调文档的作用,并要求每个阶段都要仔细验证。软件安全保护等级测评

标签: 测评