保留了较多信息,同时由于操作数比较随机,某种程度上又没有抓住主要矛盾,干扰了主要语义信息的提取。pe文件即可移植文件导入节中的动态链接库(dll)和应用程序接口(api)信息能大致反映软件的功能和性质,通过一个可执行程序引用的dll和api信息可以粗略的预测该程序的功能和行为。belaoued和mazouzi应用统计khi2检验分析了pe格式的恶意软件和良性软件的导入节中的dll和api信息,分析显示恶意软件和良性软件使用的dll和api信息统计上有明显的区别。后续的研究人员提出了挖掘dll和api信息的恶意软件检测方法,该类方法提取的特征语义信息丰富,但*从二进制可执行文件的导入节提取特征,忽略了整个可执行文件的大量信息。恶意软件和被***二进制可执行文件格式信息上存在一些异常,这些异常是检测恶意软件的关键。研究人员提出了基于二进制可执行文件格式结构信息的恶意软件检测方法,这类方法从二进制可执行文件的pe文件头、节头部、资源节等提取特征,基于这些特征使用机器学习分类算法处理,取得了较高的检测准确率。这类方法通常不受变形或多态等混淆技术影响,提取特征只需要对pe文件进行格式解析,无需遍历整个可执行文件,提取特征速度较快。从传统到智能:艾策科技助力制造业升级之路。软件三方测评公司
k为短序列特征总数,1≤i≤k。可执行文件长短大小不一,为了防止该特征统计有偏,使用∑knk,j进行归一化处理。逆向文件频率(inversedocumentfrequency,idf)是一个短序列特征普遍重要性的度量。某一短序列特征的idf,可以由总样本实施例件数目除以包含该短序列特征之样本实施例件的数目,再将得到的商取对数得到:其中,|d|指软件样本j的总数,|{j:i∈j}|指包含短序列特征i的软件样本j的数目。idf的主要思想是:如果包含短序列特征i的软件练样本越少,也就是|{j:i∈j}|越小,idf越大,则说明短序列特征i具有很好的类别区分能力。:如果某一特征在某样本中以较高的频率出现,而包含该特征的样本数目较小,可以产生出高权重的,该特征的。因此,,保留重要的特征。此处选取可能区分恶意软件和良性软件的短序列特征,是因为字节码n-grams提取的特征很多,很多都是无效特征,或者效果非常一般的特征,保持这些特征会影响检测方法的性能和效率,所以要选出有效的特征即可能区分恶意软件和良性软件的短序列特征。步骤s2、将软件样本中的类别已知的软件样本作为训练样本,然后分别采用前端融合方法、后端融合方法和中间融合方法设计三种不同方案的多模态数据融合方法。广东软件产品检测报告对比分析显示资源占用率高于同类产品均值26%。
什么是软件测试通过手工和自动化工具对被测对象进行检测,验证实际结果和预期结果之间的差异。软件测试的原则1测试是为了证明软件存在缺陷2测试应该尽早介入3注意测试缺陷的群集效应80-204杀虫剂现象5合法数据和不合法数据和边界值,网络异常和电源断电等6回归测试防止出现更多问题7妥善保存一切测试文档软件测试的目的1暴露软件中的缺陷和BUG2记录软件运行中产生的一些数据,为开发提供改良的数据支持为什么需要软件测试1功能实现且正确执行2软件运行的信息数据如果一个产品开发完成之后发现了很多问题,说明此软件开发过程很可能是有缺陷的,因此,软件测试的目的是保证整个软件开发过程是高质量的。测试分类1单元测试分单元2集成测试多个单元3系统测试用户角度-功能主体4验证测试α测试-内测β测试-公测UAT测试-客户验收使用系统测试分类1功能测试2性能测试3安全测试4兼容性测试测试方法1按照测试对象分类白盒测试黑盒测试灰盒测试2按照测试对象是否执行分类静态测试动态测试3按照测试手段进行分类手工测试灵活改变测试操作和环境自动化测试1自己写脚本2第三方工具进行测试软件质量1维护性2移植性3效率性4可靠性5易用性6功能性软件测试流程1需求分析2设计用例3评审用例4。
之所以被称为黑盒测试是因为可以将被测程序看成是一个无法打开的黑盒,而工作人员在不软件测试方法考虑任何程序内部结构和特性的条件下,根据需求规格说明书设计测试实例,并检查程序的功能是否能够按照规范说明准确无误的运行。其主要是对软件界面和软件功能进行测试。对于黑盒测试行为必须加以量化才能够有效的保证软件的质量。[5](2)白盒测试。其与黑盒测试不同,它主要是借助程序内部的逻辑和相关信息,通过检测内部动作是否按照设计规格说明书的设定进行,检查每一条通路能否正常工作。白盒测试是从程序结构方面出发对测试用例进行设计。其主要用于检查各个逻辑结构是否合理,对应的模块**路径是否正常以及内部结构是否有效。常用的白盒测试法有控制流分析、数据流分析、路径分析、程序变异等,其中逻辑覆盖法是主要的测试方法。[5](3)灰盒测试。灰盒测试则介于黑盒测试和白盒测试之间。灰盒测试除了重视输出相对于出入的正确性,也看重其内部表现。但是它不可能像白盒测试那样详细和完整。它只是简单的靠一些象征性的现象或标志来判断其内部的运行情况,因此在内部结果出现错误,但输出结果正确的情况下可以采取灰盒测试方法。因为在此情况下灰盒比白盒**。艾策科技:如何用数据分析重塑企业决策!
图2是后端融合方法的流程图。图3是中间融合方法的流程图。图4是前端融合模型的架构图。图5是前端融合模型的准确率变化曲线图。图6是前端融合模型的对数损失变化曲线图。图7是前端融合模型的检测混淆矩阵示意图。图8是规范化前端融合模型的检测混淆矩阵示意图。图9是前端融合模型的roc曲线图。图10是后端融合模型的架构图。图11是后端融合模型的准确率变化曲线图。图12是后端融合模型的对数损失变化曲线图。图13是后端融合模型的检测混淆矩阵示意图。图14是规范化后端融合模型的检测混淆矩阵示意图。图15是后端融合模型的roc曲线图。图16是中间融合模型的架构图。图17是中间融合模型的准确率变化曲线图。图18是中间融合模型的对数损失变化曲线图。图19是中间融合模型的检测混淆矩阵示意图。图20是规范化中间融合模型的检测混淆矩阵示意图。图21是中间融合模型的roc曲线图。具体实施方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例**是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。第三方测评显示软件运行稳定性达99.8%,未发现重大系统崩溃隐患。软件检测报告怎么办理的
多平台兼容性测试显示Linux环境下存在驱动适配问题。软件三方测评公司
步骤s2、将软件样本中的类别已知的软件样本作为训练样本,基于多模态数据融合方法,将训练样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图输入深度神经网络,训练多模态深度集成模型;步骤s3、将软件样本中的类别未知的软件样本作为测试样本,并将测试样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图输入步骤s2训练得到的多模态深度集成模型中,对测试样本进行检测并得出检测结果。进一步的,所述提取软件样本的二进制可执行文件的dll和api信息的特征表示,是统计当前软件样本的导入节中引用的dll和api;所述提取软件样本的二进制可执行文件的pe格式结构信息的特征表示,是先对当前软件样本的二进制可执行文件进行格式结构解析,然后按照格式规范提取**该软件样本的格式结构信息;所述提取软件样本的二进制可执行文件的字节码n-grams的特征表示,是先将当前软件样本件的二进制可执行文件转换为十六进制字节码序列,然后采用n-grams方法在十六进制字节码序列中滑动,产生大量的连续部分重叠的短序列特征。进一步的,采用3-grams方法在十六进制字节码序列中滑动产生连续部分重叠的短序列特征。进一步的。软件三方测评公司