将三种模态特征和三种融合方法的结果进行了对比,如表3所示。从表3可以看出,前端融合和中间融合较基于模态特征的检测准确率更高,损失率更低。后端融合是三种融合方法中较弱的,虽然明显优于基于dll和api信息、pe格式结构特征的实验结果,但稍弱于基于字节码3-grams特征的结果。中间融合是三种融合方法中**好的,各项性能指标都非常接近**优值。表3实验结果对比本实施例提出了基于多模态深度学习的恶意软件检测方法,提取了三种模态的特征(dll和api信息、pe格式结构信息和字节码3-grams),提出了通过三种融合方式(前端融合、后端融合、中间融合)集成三种模态的特征,有效提高恶意软件检测的准确率和鲁棒性。实验结果显示,相对**且互补的特征视图和不同深度学习融合机制的使用明显提高了检测方法的检测能力和泛化性能,其中较优的中间融合方法取得了%的准确率,对数损失为,auc值为,各项性能指标已接近**优值。考虑到样本集可能存在噪声,本实施例提出的方法已取得了比较理想的结果。由于恶意软件很难同时伪造多个模态的特征,本实施例提出的方法比单模态特征方法更鲁棒。以上所述*为本发明的较佳实施例而已,并非用于限定本发明的保护范围。策科技助力教育行业:数字化教学的创新应用 。航天软件测评
此外格式结构信息具有明显的语义信息,但基于格式结构信息的检测方法没有提取决定软件行为的代码节和数据节信息作为特征。某一种类型的特征都从不同的视角反映刻画了可执行文件的一些性质,字节码n-grams、dll和api信息、格式结构信息都部分捕捉到了恶意软件和良性软件间的可区分信息,但都存在着一定的局限性,不能充分、综合、整体的表示可执行文件的本质,使得检测结果准确率不高、可靠性低、泛化性和鲁棒性不佳。此外,恶意软件通常伪造出和良性软件相似的特征,逃避反**软件的检测。技术实现要素:本发明实施例的目的在于提供一种基于多模态深度学习的恶意软件检测方法,以解决现有采用二进制可执行文件的单一特征类型进行恶意软件检测的检测方法检测准确率不高、检测可靠性低、泛化性和鲁棒性不佳的问题,以及其难以检测出伪造良性软件特征的恶意软件的问题。本发明实施例所采用的技术方案是,基于多模态深度学习的恶意软件检测方法,按照以下步骤进行:步骤s1、提取软件样本的二进制可执行文件的dll和api信息、pe格式结构信息以及字节码n-grams的特征表示,生成软件样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图。长清软件检测报告能耗评估显示后台服务耗电量超出行业基准值42%。
***级初始级TMM初始级软件测试过程的特点是测试过程无序,有时甚至是混乱的,几乎没有妥善定义的。初始级中软件的测试与调试常常被混为一谈,软件开发过程中缺乏测试资源,工具以及训练有素的测试人员。初始级的软件测试过程没有定义成熟度目标。第二级定义级TMM的定义级中,测试己具备基本的测试技术和方法,软件的测试与调试己经明确地被区分开。这时,测试被定义为软件生命周期中的一个阶段,它紧随在编码阶段之后。但在定义级中,测试计划往往在编码之后才得以制订,这显然有背于软件工程的要求。TMM的定义级中需实现3个成熟度目标:制订测试与调试目标,启动测试计划过程,制度化基本的测试技术和方法。(I)制订测试与调试目标软件**必须消晰地区分软件开发的测试过程与调试过程,识别各自的目标,任务和括动。正确区分这两个过程是提高软件**测试能力的基础。与调试工作不同,测试工作是一种有计划的活动,可以进行管理和控制。这种管理和控制活动需要制订相应的策略和政策,以确定和协调这两个过程。制订测试与调试目标包含5个子成熟度目标:1)分别形成测试**和调试**,并有经费支持。2)规划并记录测试目标。3)规划井记录调试目标。4)将测试和调试目标形成文档。
[3]软件测试方法原则编辑1.尽早不断测试的原则应当尽早不断地进行软件测试。据统计约60%的错误来自设计以前,并且修正一个软件错误所需的费用将随着软件生存周期的进展而上升。错误发现得越早,修正它所需的费用就越少。[4]测试用例由测试输入数据和与之对应的预期输出结果这两部分组成。[4]3.**测试原则(1)**测试原则。这是指软件测试工作由在经济上和管理上**于开发机构的**进行。程序员应避免检査自己的程序,程序设计机构也不应测试自己开发的程序。软件开发者难以客观、有效地测试自己的软件,而找出那些因为对需求的误解而产生的错误就更加困难。[4](2)合法和非合法原则。在设计时,测试用例应当包括合法的输入条件和不合法的输入条件。[4](3)错误群集原则。软件错误呈现群集现象。经验表明,某程序段剩余的错误数目与该程序段中已发现的错误数目成正比,所以应该对错误群集的程序段进行重点测试。[4](4)严格性原则。严格执行测试计划,排除测试的随意性。[4](5)覆盖原则。应当对每一个测试结果做***的检查。[4](6)定义功能测试原则。检查程序是否做了要做的事*是成功的一半,另一半是看程序是否做了不属于它做的事。[4](7)回归测试原则。应妥善保留测试用例。渗透测试报告暴露2个高危API接口需紧急加固。
后端融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图13所示,规范化后的混淆矩阵如图14所示。后端融合模型的roc曲线如图15所示,其显示后端融合模型的auc值为。(6)中间融合中间融合的架构如图16所示,中间融合方式用深度神经网络从三种模态的特征分别抽取高等特征表示,然后合并学习得到的特征表示,再作为下一个深度神经网络的输入训练模型,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器(optimizer)采用的是adagrad,batch_size是40。图16中,用于抽取dll和api信息特征视图的深度神经网络包含3个隐含层,其***个隐含层的神经元个数是128,第二个隐含层的神经元个数是64,第三个隐含层的神经元个数是32,且3个隐含层中间间隔设置有dropout层。用于抽取格式信息特征视图的深度神经网络包含2个隐含层,其***个隐含层的神经元个数是64,其第二个隐含层的神经元个数是32,且2个隐含层中间设置有dropout层。用于抽取字节码n-grams特征视图的深度神经网络包含4个隐含层,其***个隐含层的神经元个数是512,第二个隐含层的神经元个数是384,第三个隐含层的神经元个数是256,第四个隐含层的神经元个数是125。艾策医疗检测中心为体外诊断试剂提供全流程合规性验证服务。西安软件评测中心
艾策检测为新能源汽车电池提供安全性能深度解析。航天软件测评
特征之间存在部分重叠,但特征类型间存在着互补,融合这些不同抽象层次的特征可更好的识别软件的真正性质。且恶意软件通常伪造出和良性软件相似的特征,逃避反**软件的检测,但恶意软件很难同时伪造多个抽象层次的特征逃避检测。基于该观点,本发明实施例提出一种基于多模态深度学习的恶意软件检测方法,以实现对恶意软件的有效检测,提取了三种模态的特征(dll和api信息、pe格式结构信息和字节码3-grams),提出了通过前端融合、后端融合和中间融合这三种融合方式集成三种模态的特征,有效提高恶意软件检测的准确率和鲁棒性,具体步骤如下:步骤s1、提取软件样本的二进制可执行文件的dll和api信息、pe格式结构信息以及字节码n-grams的特征表示,生成软件样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图;统计当前软件样本的导入节中引用的dll和api,提取得到当前软件样本的二进制可执行文件的dll和api信息的特征表示。对当前软件样本的二进制可执行文件进行格式结构解析,并按照格式规范提取**该软件样本的格式结构信息,得到该软件样本的二进制可执行文件的pe格式结构信息的特征表示。航天软件测评