您好,欢迎访问

商机详情 -

软件开发验收测评

来源: 发布时间:2025年04月13日

    在不知道多长的子序列能更好的表示可执行文件的情况下,只能以固定窗口大小在字节码序列中滑动,产生大量的短序列,由机器学习方法选择可能区分恶意软件和良性软件的短序列作为特征,产生短序列的方法叫n-grams。“080074ff13b2”的字节码序列,如果以3-grams产生连续部分重叠的短序列,将得到“080074”、“0074ff”、“74ff13”、“ff13b2”四个短序列。每个短序列特征的权重表示有多种方法。**简单的方法是如果该短序列在具体样本中出现,就表示为1;如果没有出现,就表示为0,也可以用。本实施例采用3-grams方法提取特征,3-grams产生的短序列非常庞大,将产生224=(16,777,216)个特征,如此庞大的特征集在计算机内存中存储和算法效率上都是问题。如果短序列特征的tf较小,对机器学习可能没有意义,选取了tf**高的5000个短序列特征,计算每个短序列特征的,每个短序列特征的权重是判断其所在软件样本是否为恶意软件的依据,也是区分每个软件样本的依据。(4)前端融合前端融合的架构如图4所示,前端融合方式将三种模态的特征合并,然后输入深度神经网络,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器。第三方实验室验证数据处理速度较上代提升1.8倍。软件开发验收测评

软件开发验收测评,测评

    12)把节装入到vmm的地址空间;(13)可选头部的sizeofcode域取值不正确;(14)含有可疑标志。此外,恶意软件和良性软件间以下格式特征也存在明显的统计差异:(1)证书表是软件厂商的可认证的声明,恶意软件很少有证书表,而良性软件大部分都有软件厂商可认证的声明;(2)恶意软件的调试数据也明显小于正常文件的,这是因为恶意软件为了增加调试的难度,很少有调试数据;(3)恶意软件4个节(.text、.rsrc、.reloc和.rdata)的characteristics属性和良性软件的也有明显差异,characteristics属性通常**该节是否可读、可写、可执行等,部分恶意软件的代码节存在可写异常,只读数据节和资源节存在可写、可执行异常等;(4)恶意软件资源节的资源个数也明显少于良性软件的,如消息表、组图表、版本资源等,这是因为恶意软件很少使用图形界面资源,也很少有版本信息。pe文件很多格式属性没有强制限制,文件完整性约束松散,存在着较多的冗余属性和冗余空间,为pe格式恶意软件的传播和隐藏创造了条件。此外,由于恶意软件为了方便传播和隐藏,尽一切可能的减小文件大小,文件结构的某些部分重叠,同时对一些属性进行了特别设置以达到anti-dump、anti-debug或抗反汇编。软件 验收检测报告功能完整性测试发现3项宣传功能未完全实现。

软件开发验收测评,测评

    坐标点(0,1)**一个完美的分类器,它将所有的样本都正确分类。roc曲线越接近左上角,该分类器的性能越好。从图9可以看出,该方案的roc曲线非常接近左上角,性能较优。另外,前端融合模型的auc值为。(5)后端融合后端融合的架构如图10所示,后端融合方式用三种模态的特征分别训练神经网络模型,然后进行决策融合,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器(optimizer)采用的是adagrad,batch_size是40。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,后端融合模型的准确率变化曲线如图11所示,模型的对数损失变化曲线如图12所示。从图11和图12可以看出,当epoch值从0增加到5过程中,模型的训练准确率和验证准确率快速提高,模型的训练对数损失和验证对数损失快速减少;当epoch值从5到50的过程中,前端融合模型的训练准确率和验证准确率小幅提高,训练对数损失和验证对数损失缓慢下降;综合分析图11和图12的准确率和对数损失变化曲线,选取epoch的较优值为40。确定模型的训练迭代数为40后,进行了10折交叉验证实验。

    降低成本对每个阶段都进行测试,包括文档,便于控制项目过程缺点依赖文档,没有文档的项目无法使用,复杂度很高,实践需要很强的管理H模型把测试活动完全**出来,将测试准备和测试执行体现出来测试准备-测试执行就绪点其他流程----------设计等v模型适用于中小企业需求在开始必须明确,不适用变更需求w模型适用于中大企业包括文档也需要测试(需求分析文档概要设计文档详细设计文档代码文档)测试和开发同步进行H模型对公司参与人员技能和沟通要求高测试阶段单元测试-集成测试-系统测试-验证测试是否覆盖代码白盒测试-黑盒测试-灰盒测试是否运行静态测试-动态测试测试手段人工测试-自动化测试其他测试回归测试-冒*测试功能测试一般功能测试-界面测试-易用性测试-安装测试-兼容性测试性能测试稳定性测试-负载测试-压力测试-时间性能-空间性能负载测试确定在各种工作负载下,系统各项指标变化情况压力测试:通过确定一个系统的刚好不能接受的性能点。获得系统能够提供的**大服务级别测试用例为特定的目的而设计的一组测试输入,执行条件和预期结果,以便测试是否满足某个特定需求。通过大量的测试用例来检测软件的运行效果,它是指导测试工作进行的依据。艾策检测以智能算法驱动分析,为工业产品提供全生命周期质量管控解决方案!

软件开发验收测评,测评

    并分发至项目涉及的所有管理人员和开发人员。5)将测试目标反映在测试计划中。(II)启动测试计划过程制订计划是使一个过程可重复,可定义和可管理的基础。测试计划应包括测试目的,风险分析,测试策略以及测试设计规格说明和测试用例。此外,测试计划还应说明如何分配测试资源,如何划分单元测试,集成测试,系统测试和验收测试的任务。启动测试计划过程包含5个子目标:1)建立**内的测试计划**并予以经费支持。2)建立**内的测试计划政策框架并予以管理上的支持。3)开发测试计划模板井分发至项目的管理者和开发者。4)建立一种机制,使用户需求成为测试计划的依据之一。5)评价,推荐和获得基本的计划工具并从管理上支持工具的使用。(III)制度化基本的测试技术和方法?为改进测试过程能力,**中需应用基本的测试技术和方法,并说明何时和怎样使用这些技术,方法和支持工具。将基本测试技术和方法制度化有2个子目标:1)在**范围内成立测试技术组,研究,评价和推荐基本的测试技术和测试方法,推荐支持这些技术与方法的基本工具。2)制订管理方针以保证在全**范围内一致使用所推荐的技术和方法。第三级集成级在集成级,测试不**是跟随在编码阶段之后的一个阶段。无障碍测评认定视觉障碍用户支持功能缺失4项。软件验收测试报告哪家好

安全审计发现日志模块存在敏感信息明文存储缺陷。软件开发验收测评

    且4个隐含层中间间隔设置有dropout层。用于输入合并抽取的高等特征表示的深度神经网络包含2个隐含层,其***个隐含层的神经元个数是64,第二个神经元的隐含层个数是10,且2个隐含层中间设置有dropout层。且所有dropout层的dropout率等于。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,中间融合模型的准确率变化曲线如图17所示,模型的对数损失变化曲线如图18所示。从图17和图18可以看出,当epoch值从0增加到20过程中,模型的训练准确率和验证准确率快速提高,模型的训练对数损失和验证对数损失快速减少;当epoch值从30到50的过程中,中间融合模型的训练准确率和验证准确率基本保持不变,训练对数损失缓慢下降;综合分析图17和图18的准确率和对数损失变化曲线,选取epoch的较优值为30。确定模型的训练迭代数为30后,进行了10折交叉验证实验。中间融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图19所示,规范化后的混淆矩阵如图20所示。中间融合模型的roc曲线如图21所示,auc值为,已经非常接近auc的**优值1。(7)实验结果比对为了综合评估本实施例提出融合方案的综合性能。软件开发验收测评

标签: 测评