您好,欢迎访问

商机详情 -

南京第三方软件测试中心

来源: 发布时间:2025年04月10日

    optimizer)采用的是adagrad,batch_size是40。深度神经网络模型训练基本都是基于梯度下降的,寻找函数值下降速度**快的方向,沿着下降方向迭代,迅速到达局部**优解的过程就是梯度下降的过程。使用训练集中的全部样本训练一次就是一个epoch,整个训练集被使用的总次数就是epoch的值。epoch值的变化会影响深度神经网络的权重值的更新次数。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,前端融合模型的准确率变化曲线如图5所示,模型的对数损失变化曲线如图6所示。从图5和图6可以看出,当epoch值从0增加到5过程中,模型的验证准确率和验证对数损失有一定程度的波动;当epoch值从5到50的过程中,前端融合模型的训练准确率和验证准确率基本不变,训练和验证对数损失基本不变;综合分析图5和图6的准确率和对数损失变化曲线,选取epoch的较优值为30。确定模型的训练迭代数为30后,进行了10折交叉验证实验。前端融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图7所示,规范化后的混淆矩阵如图8所示。前端融合模型的roc曲线如图9所示,该曲线反映的是随着检测阈值变化下检测率与误报率之间的关系曲线。代码审计发现2处潜在内存泄漏风险,建议版本迭代修复。南京第三方软件测试中心

南京第三方软件测试中心,测评

    坐标点(0,1)**一个完美的分类器,它将所有的样本都正确分类。roc曲线越接近左上角,该分类器的性能越好。从图9可以看出,该方案的roc曲线非常接近左上角,性能较优。另外,前端融合模型的auc值为。(5)后端融合后端融合的架构如图10所示,后端融合方式用三种模态的特征分别训练神经网络模型,然后进行决策融合,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器(optimizer)采用的是adagrad,batch_size是40。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,后端融合模型的准确率变化曲线如图11所示,模型的对数损失变化曲线如图12所示。从图11和图12可以看出,当epoch值从0增加到5过程中,模型的训练准确率和验证准确率快速提高,模型的训练对数损失和验证对数损失快速减少;当epoch值从5到50的过程中,前端融合模型的训练准确率和验证准确率小幅提高,训练对数损失和验证对数损失缓慢下降;综合分析图11和图12的准确率和对数损失变化曲线,选取epoch的较优值为40。确定模型的训练迭代数为40后,进行了10折交叉验证实验。南京第三方软件测试中心对比分析显示资源占用率高于同类产品均值26%。

南京第三方软件测试中心,测评

    将三种模态特征和三种融合方法的结果进行了对比,如表3所示。从表3可以看出,前端融合和中间融合较基于模态特征的检测准确率更高,损失率更低。后端融合是三种融合方法中较弱的,虽然明显优于基于dll和api信息、pe格式结构特征的实验结果,但稍弱于基于字节码3-grams特征的结果。中间融合是三种融合方法中**好的,各项性能指标都非常接近**优值。表3实验结果对比本实施例提出了基于多模态深度学习的恶意软件检测方法,提取了三种模态的特征(dll和api信息、pe格式结构信息和字节码3-grams),提出了通过三种融合方式(前端融合、后端融合、中间融合)集成三种模态的特征,有效提高恶意软件检测的准确率和鲁棒性。实验结果显示,相对**且互补的特征视图和不同深度学习融合机制的使用明显提高了检测方法的检测能力和泛化性能,其中较优的中间融合方法取得了%的准确率,对数损失为,auc值为,各项性能指标已接近**优值。考虑到样本集可能存在噪声,本实施例提出的方法已取得了比较理想的结果。由于恶意软件很难同时伪造多个模态的特征,本实施例提出的方法比单模态特征方法更鲁棒。以上所述*为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

    等价类划分法将不能穷举的测试过程进行合理分类,从而保证设计出来的测试用例具有完整性和**性。有数据输入的地方,可以使用等价类划分法。从大量数据中挑选少量**数据进行测试有效等价类:符合需求规格说明书规定的数据用来测试功能是否正确实现无效等价类:不合理的输入数据**—用来测试程序是否有强大的异常处理能力(健壮性)使用**少的测试数据,达到**好的测试质量边界值分析法对输入或输出的边界值进行测试的一种黑盒测试方法。是作为对等价类划分法的补充,这种情况下,其测试用例来自等价类的边界。边界点1、边界是指相对于输入等价类和输出等价类而言,稍高于、稍低于其边界值的一些特定情况。2、边界点分为上点、内点和离点。如果是范围[1,100]需要选择0,1,2,50,99,100,101如果是个数**多20个[0,20]需要测0,10,20,-1,21因果图分析法用画图的方式表达输入条件和输出结果之间的关系。1恒等2与3或4非5互斥1个或者不选6***必须是1个7包含可以多选不能不选8要求如果a=1,则要求b必须是1,反之如果a=0时,b的值无所谓9**关系当a=1时,要求b必须为0;而当a=0时。用户体验测评中界面交互评分低于同类产品均值15.6%。

南京第三方软件测试中心,测评

    每一种信息的来源或者形式,都可以称为一种模态。例如,人有触觉,听觉,视觉,嗅觉。多模态机器学习旨在通过机器学习的方法实现处理和理解多源模态信息的能力。多模态学习从1970年代起步,经历了几个发展阶段,在2010年后***步入深度学习(deeplearning)阶段。在某种意义上,深度学习可以被看作是允许我们“混合和匹配”不同模型以创建复杂的深度多模态模型。目前,多模态数据融合主要有三种融合方式:前端融合(early-fusion)即数据水平融合(data-levelfusion)、后端融合(late-fusion)即决策水平融合(decision-levelfusion)以及中间融合(intermediate-fusion)。前端融合将多个**的数据集融合成一个单一的特征向量空间,然后将其用作机器学习算法的输入,训练机器学习模型,如图1所示。由于多模态数据的前端融合往往无法充分利用多个模态数据间的互补性,且前端融合的原始数据通常包含大量的冗余信息。因此,多模态前端融合方法常常与特征提取方法相结合以剔除冗余信息,基于领域经验从每个模态中提取更高等别的特征表示,或者应用深度学习算法直接学习特征表示,然后在特性级别上进行融合。后端融合则是将不同模态数据分别训练好的分类器输出决策进行融合,如图2所示。整合多学科团队的定制化检测方案,体现艾策服务于制造的技术深度。南京第三方软件测试中心

网络安全新时代:深圳艾策的防御策略解析。南京第三方软件测试中心

    当我们拿到一份第三方软件测试报告的时候,我们可能会好奇第三方软件检测机构是如何定义一份第三方软件测试报告的费用呢,为何价格会存在一些差异,如何找到高性价比的第三方软件测试机构来出具第三方软件检测报告呢。我们可以从以下三个方面着手讨论关于软件检测机构的第三方软件测试报告费用的一些问题,对大家在选择适合价格的软件检测机构,出具高性价比的软件检测报告有一定的帮助和参考意义。1、首先,软件检测机构大小的关系,从资质上来说,软件检测机构的规模大小和资质的有效性是没有任何关系的。可能小型的软件检测机构,员工人数规模会小一点,但是出具的CMA或者CNAS第三方软件检测报告和大型机构的效力是没有区别的。但是,小机构在人员数量,运营成本都会成本比较低,在这里其实是可以降低一份第三方软件测试报告的部分费用,所以反过来说,小型软件检测机构的价格可能更加具有竞争力。2、软件检测流程的关系,为何流程会和第三方软件测试的费用有关系呢。因为,一个机构的软件检测流程如果是高效率流转,那么在同等时间内,软件检测机构可以更高效的对软件测试报告进行产出,相对来说,时间成本就会降低,提高测试报告的出具效率。南京第三方软件测试中心

标签: 测评