露天大型石刻裂缝监测:露天的大型石刻造像(如摩崖大佛、石碑)长期暴露在环境中,岩石内部温差应力会产生细微裂隙,这些裂隙若不断扩展,可能导致石刻表面局部剥落或断裂。高空细微裂缝用肉眼不易察觉,传统需要架设脚手架近距离检查,频率有限。无人机视觉监测为露天石刻提供了一种安全高效的裂缝追踪手段。无人机可以贴近巨型石雕的表面飞行,利用高倍相机拍摄关键部位的特写图像,分辨出肉眼难见的细小裂纹。通过定期重复航拍并采用图像叠加算法对比,系统可以量化每条裂缝的宽度变化和长度扩展情况,精度达亚毫米级 。当监测报告显示某裂缝逐步扩展时,文物修复团队可据此判定岩体劣化趋势,及早采取防风化涂层、灌注黏合剂等保护措施。相比定期搭架巡检,无人机方法对石刻“零扰动”,却能够连续记录裂隙演变,为制定长期保护方案提供科学依据,避免了珍贵石刻因裂缝加剧而发生不可逆的损毁。露天矿边坡位移实时监测,提前预警滑坡风险保障作业安全。拦水坝机器视觉位移监测仪监控平台

古墓封土沉降监测:许多古墓葬的封土堆在经历多年以后会发生下沉开裂,这往往意味着墓室结构可能受损甚至有坍塌风险。以往考古人员定期观测封土表面的沉降标和裂缝扩展情况,但人工测量无法掌握大型封土堆的变化。无人机视觉监测可对古墓封土进行整体的形变监测而不破坏地表。无人机沿封土堆表面飞行扫描,生成封土的数字高程模型,精度可达到厘米乃至毫米级。将多期模型比对,系统能绘制出封土沉降等值线,量化沉降中心和范围,并监测土体表面的新裂缝出现情况。这样,哪怕封土某处只下沉几毫米、或隆起裂开一条窄缝,系统都能及时发现。监测数据通过云平台发送给考古和文保专业人员团队,方便远程评估墓葬结构安全。如果发现封土沉降速率异常加快或裂缝扩展,管理部门将迅速采取行动,例如在封土周边构筑支护、改善排水,或限制游客进入范围,以防止墓室坍塌和文物损毁 。拦水坝机器视觉位移监测仪监控平台周期性位移监测辅助设备检修,数据驱动电力设施预测性维护。

邻近施工对建筑影响监测:城市施工往往挨着已有建筑,如果基坑开挖或桩基施工引起邻近建筑下沉开裂,将造成重大损失。传统做法是在周边建筑物布置少量沉降观测点和裂缝计,信息有限且可能滞后。利用无人机视觉监测,可以对邻近建筑进行完整的沉降和位移观测,为周边保护提供数据支撑。无人机在施工现场周边巡航,采集邻近建筑外墙和地基部位的图像,建立基准三维模型。此后每天或关键工序后重复监测,将新数据与基准模型比对可准确计算建筑物的沉降量和倾斜变化。如果某栋建筑在某日出现了较前日额外几毫米的不均匀沉降,系统会及时发出预警提醒施工方 。通过云平台,监理单位和相关部门也能同步查看这些监测结果。当监测显示邻楼沉降超出警戒值时,施工方可以立即暂停相应工序,采取回填土体、增设支撑等补救措施,并对受影响居民及时疏散安置。此举有效避免了施工扰动对周边建筑造成结构性破坏,保障了城市建设的安全进行。
尾矿坝坡面位移监测:除了沉降之外,尾矿坝下游坡面的水平位移也是评价坝体稳定性的关键参数。坝坡向外鼓出或出现裂缝,往往预示坝体剪切失稳的可能。传统监测方法主要通过有限的测斜仪或目视巡查发现坝坡异常,可能错过初期细小的位移迹象。引入无人机位移监测后,可对坝坡表面实行网格化的精细观测。无人机贴近坝坡飞行,对坡面网格点进行高精度拍摄,利用图像匹配算法计算每个点相对于基准位置的偏移量。凭借毫米级的检测精度,系统能够发现坝坡局部区域几毫米的位移或裂缝张开变化 。监测数据通过云平台即时传送给安全管理团队,实现坝坡变形的实时预警。当坝坡某处被监测到持续向外位移时,说明坝体内部可能产生剪切滑动,管理人员可迅速采取卸载减压、削坡等应急处理,防止坝体整体失稳破坏。精细位移数据辅助优化边坡设计,提高采矿安全与效率。

基坑周边地表沉降监测:深基坑开挖往往导致周边地面发生一定程度的沉降。如果地表沉降过大,可能拉裂埋地管线、塌陷路面,影响城市正常运行。施工单位通常布设沉降观测点来监测四周地表下沉,但点位有限且需要人力反复测量。利用无人机技术,可以对基坑周边大片区域进行快速的地表沉降监测。无人机沿基坑边缘和附近街区飞行,获取地面和道路的影像,通过数字摄影测量得到高精度的地面高程模型。对比不同时期模型,系统能够绘制出周边沉降槽的发展形态,精确测出max沉降值及沉降范围扩展速度,分辨率远高于人工水准测量。监测结果实时上传云端供各相关方查看。如发现某管线廊道上方地面在短期内出现累计几厘米的下沉,系统将立即报警 。施工方据此可加强对地下管线的保护,例如暂停降水、回填注浆,或提前更改施工工法,以避免地下管道因过度拉伸而破裂,防范次生事故。 风电机组塔身周期性倾斜监测,辅助运维决策是否调停或检修。拦水坝机器视觉位移监测仪监控平台
架空输电线弧垂监测,空中巡检确保导线安全间隙。拦水坝机器视觉位移监测仪监控平台
平台嵌入AI智能分析引擎,提升异常识别与趋势预测能力。传统水利监测主要依赖人工设阈值告警,对突发性或非线性异常难以快速识别。星地遥感在其智慧水利平台中引入AI智能分析引擎,利用机器学习算法对海量历史监测数据进行建模训练,具备趋势识别、突变检测和潜在风险评分等功能。系统可自动识别非线性位移变化、周期性异常震荡、突发滑移等情况,并输出预警等级与解释建议。以边坡监测为例,平台能基于10天前的微小变化趋势,预测未来72小时的滑移风险概率,辅助决策人员提前干预。在深圳某大坝项目中,该AI模型准确识别出一次由地下水位骤升引发的库岸局部沉降趋势,实现了提前72小时的预警通知,为风险控制赢得了充足时间。AI分析的引入,使得水利监测系统从“报警机制”向“预测体系”转型,迈入智能治理新阶段。拦水坝机器视觉位移监测仪监控平台