认知科学和人工智能一开始有着相似的目标,都包含了对人的心智进行计算建模。人有许多认知功能,常被提及的包括记忆、注意力、感知、推理、规划、决策等,有时判断一个对象是否是智能的,会以是否具有这些认知功能为标准。这种认识对智能的研究有促进的作用,但也有把研究导向支离破碎的风险——将这些认知功能割裂开研究能取得很好的成果,但已有实践表明如何通过“认知架构”整合在一起、使其协同工作却是很大的问题,因为这些功能未必是能够相互割裂的。此外,如果某个机器缺少了适应性,那么即使具备了某些认知功能,也不会被认为拥有了真正的“智能”。例如,早期人工智能的研究已经涵盖了“推理”技术,象棋程序“深蓝”就有很强的“推理” 和“规划”能力,然而,它与人们内心深处所追寻的“真正的”人工智能相去甚远。当然,对此的一种回应是该机器不够“完备”,不具有所有的认知功能。且不论这种“完备”的**如何界定,我们设想,一个机器或生物体现了对环境的适应能力,即便其不具有某些认知功能(例如“因果推理”),我们是否会认为它是“智能”的?可以说,在具有适应性的基础上,仍然有智能程度高低的问题,而各个认知功能则是为“适应” 环境服务的。智能医疗服务通过大数据分析、远程医疗等手段,提高了医疗服务的效率和质量。仓山区智能ai
一个典型的机器学习系统包含三个部分:“学习算法”、“数据”、“技能程序”(也被称为“模型”),并通常将学习过程分为训练和测试两个阶段。在训练阶段,“学习算法”通过总结数据中的经验,调整“技能程序”。测试阶段,“技能程序”根据输入做出响应,从而“解决问题”。我们可以发现,“机器学习”将以往由人类开发者编写的“技能程序”交由“学习算法”从数据中总结,机器在这一过程中尝试通过适应环境(即数据)来解决问题。然而,在测试阶段,“学习算法”已经不再起作用了,也就是说,此时机器不再具有适应性,而是只只执行“技能程序”,“刻板地”响应输入信号。这也是为什么它不再符合人们直觉上的“智能”了。许多机器学习的研究者也意识到了这一点,提出“连续学习(Continuous Learning)”、“终身学习(Life-long Learning)”等的概念和方法正是摆脱这一困境的努力。闽侯珍云数字智能人工智能在交通管理中的应用,如智能交通系统、智能停车等,提高了交通效率和安全性。
这种“智能”的解释可以适用于“机器学习(Machine Learning)”,毕竟“学习”就是适应的过程。但似乎不是所有的有限资源下的适应性都是人们内心深处的“智能”那物,特别是对于典型的“机器学习”系统。“机器学习”系统的确能工作在有限的资源下,毕竟这是一个现实约束,同时,人们也发现了,一个“机器学习”系统往往只能解决少数一些问题[2],而没有人类智能那样的“通用性”。例如“AlphaGo”高超的围棋技能正是它的“智能”发挥作用后的结果,但“AlphaGo”及其继任者(如“Alpha Zero”)只只在某一类问题(例如围棋、象棋、Dota等)上表现得很好,却不具有人类这样的“通才”,不能适应广阔的场景[3]。一批研究者比较早在2006年(AGI Workshop上)正式提出了“通用人工智能(Artificial General Intelligence, AGI)”的概念(Wang & Goertzel, 2007),与特定问题求解系统的“人工智能”研究划清了界限。尽管如此,我们并不能否认“机器学习”系统体现了“智能”。那么,“机器学习”中导致争议的是什么?
智能产品在现代生活中扮演着越来越重要的角色。首先,操作简便性是智能产品的主体优势之一,用户可以轻松上手,无需复杂的操作流程。其次,功能实用性让智能产品能够满足用户的多样化需求,如智能家居的自动调节、智能办公的自动化处理等,极大地提升了生活和工作效率。反应速度极快,无论是语音控制还是手势操作,智能产品都能迅速作出回应,满足用户的即时需求。同时,良好的兼容性使智能产品能够与各种设备和系统无缝对接,形成完整的智能家居或办公环境。此外,智能产品通常具有较低的学习成本,用户可以通过简单的教程或在线帮助快速掌握使用技巧。而完善的售后服务则保障了用户在使用过程中的顺畅体验,让智能产品真正成为用户的好帮手。综上所述,智能产品以其操作简便、功能实用、反应迅速、兼容性强、学习成本低和售后服务完善等优点,赢得了用户的多好评。 人工智能在智能制造中的广泛应用,推动了制造业的智能化和转型升级。
1.“适应性”是区分“智能”的关键因素在各种复杂的、变化多端的现象下,哪个才是界定“智能”这一概念的关键因素?是否必须要忠实地模拟大脑,或是需要产生与人类相似的行为,还是要解决复杂的问题,亦或是需要具备各种认知功能?这些都有一些合理性,但背后是否有某个在抽象层次上的共同点?人类的大脑、行为、认知过程都体现了适应性,经过适应,人类往往能由简到繁地解决那些未见过的问题[1]。可以说,在各种特点中,适应性才是“智能”的核力特点。我们当然不能否认经过漫长的演化,形成的大脑结构对“智能”而言的重要性,但模拟大脑时往往被忽略的是,究竟要在多大的精细程度上对大脑做“忠实”的模拟。毕竟,大脑中的许多生理或物理特点对“智能”未必起到关键作用。如果一个模拟大脑的机器,只是在刻板地执行某个程序,而没有适应新环境的能力,这样的机器尽管“类脑”却不符合我们对“智能”的直觉。人工智能在金融投资领域的应用,如智能投资策略、智能风险管理等,为投资者提供了更加智能的投资决策支持。罗源ai智能发展趋势是什么
物联网技术通过智能设备、传感器等,实现了对物理世界的智能化感知和管理。仓山区智能ai
同时,“开放环境”的另一层含义是对适应的对象所做的约束,该对象排除了特定某个或某类问题这样的“封闭环境”,并认为对具体问题而言没有明确预先定义的边界。在有限的资源下,面对开放的环境,智能体的知识和资源都是不足的[5]。这种对“智能”的解释兼顾了当下的主要研究(机器学习),也可扩展至未来研究(通用人工智能)。在对“智能”的解释的基础上,这种对“通用智能”的解释既兼顾了主体的特性(应对环境的改变),又明确了适应对象的边界(非特定问题)。仓山区智能ai