障碍检测避免碰撞事故实时检测抓取路径障碍物,能有效避免碰撞发生,保障自动化生产的安全。在自动化生产线中,机械臂抓取工件时,若路径上存在障碍物,可能导致机械臂与障碍物碰撞,造成设备损坏和生产中断。深浅优视 3D 工业相机可实时扫描机械臂的工作空间,检测是否存在障碍物,并将信息及时反馈给控制系统,使其调整抓取路径。例如,当检测到传送带上有异物时,会引导机械臂避开异物,确保抓取过程安全。这种障碍检测能力提高了自动化生产线的安全性和可靠性,减少了设备故障和生产事故的发生能检测玻璃制品表面的划痕、气泡等瑕疵 。结构光相机3D工业相机

低畸变投射装置:低畸变投射装置确保了投影图案的准确性和稳定性。在 3D 测量过程中,投射的图案是获取物体三维信息的重要依据。深浅优视相机的低畸变投射装置能够使投影图案在物体表面清晰、准确地呈现,避免因图案畸变导致的测量误差。在对高精度要求的机械零件进行检测时,这种低畸变特性能够保证测量结果的可靠性,为产品质量控制提供有力支持。融合深度学习算法:融合深度学习的 3D 重建算法,使相机能够对获取的图像数据进行智能分析和处理。深度学习算法具有强大的自学习能力,能够不断优化 3D 重建效果。随着使用时间的增加和数据量的积累,相机对不同物体的检测和重建精度会不断提高。例如在面对复杂形状的零部件时,算法能够快速识别物体特征,准确构建三维模型,实现高精度的检测和测量,提高检测的智能化水平。3D工业相机销售厂家详细记录检测数据,方便企业进行质量追溯与问题排查 。

汽车制造行业:在汽车制造中,深浅优视 3D 工业相机发挥着关键作用。从汽车零部件生产环节开始,就可对如发动机缸体、变速器齿轮等关键零部件进行高精度尺寸测量和缺陷检测。通过相机快速获取零部件的三维数据,能精细判断尺寸是否符合设计标准,及时发现诸如裂纹、砂眼等缺陷,保障零部件质量。在车身焊接完成后,利用相机对车身整体结构进行检测,测量各焊接部位的位置精度和焊接质量,确保车身的整体强度和安全性。在汽车装配过程中,相机为机器人提供视觉引导,帮助机器人准确抓取和安装各类零部件,提高装配效率和准确性,降低人工装配误差。
该相机融合深度学习的三维重建算法,实现了高精度 3D 检测。传统三维检测算法在处理复杂物体表面时,容易出现模型失真或细节丢失,而深浅优视 3D 工业相机的算法通过大量样本训练,能智能识别物体的几何特征,精细构建三维模型。无论是曲面、棱角还是细微的凹凸结构,算法都能准确还原,检测精度可达微米级别。在精密零件检测中,这种高精度的三维重建能力让微小的尺寸偏差、表面缺陷无所遁形,为质量控制提供可靠的量化数据,***提升检测的准确性和效率。研发系列结构光相机,不同视野下均能保证检测精度。

便捷的系统维护:系统维护便捷,相机的硬件设计和软件架构都充分考虑了维护的便利性。硬件采用模块化设计,当某个模块出现故障时,能够快速更换,减少维修时间。软件具备自我诊断和故障提示功能,能够帮助维护人员快速定位问题。同时,公司提供完善的售后服务,定期对设备进行维护和升级,确保相机系统长期稳定运行,降低企业的维护成本和使用风险。符合工业标准规范:产品严格符合相关的工业标准规范,在安全性、可靠性、电磁兼容性等方面都经过严格测试和认证。在工业生产中,设备必须符合各种标准规范,以确保生产安全和产品质量。深浅优视 3D 工业相机的合规性,使其能够放心地应用于各种工业场景,满足企业对设备质量和安全性的要求,为企业的生产运营提供保障。对电脑主板生产进行全*质量检测,提升良品率 。3D工业相机销售厂家
具备微米级精度分辨力,满足精密零件检测严苛需求。结构光相机3D工业相机
飞行时间法(ToF)技术的应用与优势飞行时间法(ToF)技术通过测量光脉冲从发射到反射回相机的时间差来计算物体与相机之间的距离。ToF技术的优势在于其快速响应和实时性,能够在毫秒级别内完成深度数据的采集,因此非常适合动态场景的应用,如机器人导航、自动驾驶和实时监控。此外,ToF技术对光照条件的依赖性较低,能够在室内外多种环境下工作。然而,ToF技术的分辨率相对较低,通常适用于一些对精度要求不高的场景,具有局限性。结构光相机3D工业相机