力可OHN736&836系列仪器采用惰性熔融法,提供各种无机材料、钢铁、有色金属、硬质合金陶瓷材料中宽范围的氧氮氢同时测定。ONH836仪器通过***采纳客户的反馈意见和创新设计,力可***仪器采用触摸屏技术和在线软件平台,增强了仪器的可操作性,降低了分析成本,节省实验室桌面空间。
用户友好界面的Cornerstone™ 软件
力可**的Cornerstone碳硫分析软件采用触摸屏界面使用户可完整的达到分析控制、方法设定、在线诊断、数据报告。Cornerstone碳硫分析软件允许用户在单一分析界面中完成日常的所有工作,快速而且简单易用。力可创新的批次和重复样品数据分组功能极大简化了样品结果输出和结果标准偏差的自动计算。减少了繁琐的额外数据处理。
ONH836仪器通过***采纳客户的反馈意见和创新设计。广东进口分析仪采购
Summary
The determination of the amount of oxygen, nitrogen, and hydrogen in iron, steel, nickel-, and cobalt-base alloys represents some of the most important quality metrics for these materials. Oxygen is used to create steel from pig iron by removing excess carbon. Oxygen content must be controlled to limit the amount of carbon monoxide that can be formed during solidification which may cause excessive porosity. Nitrogen is considered both an impurity as well as an important alloying agent. Itcan be present as a nitride or interstitially in its gaseous form. Increased nitrogen content is known to increase yield and tensile strength, thus decreasing ductility and formability. Excessive levels may evolve during solidification thus increasing porosity. High hydrogen content is the primary cause of embrittlement, blistering and flaking due to its high
mobility through the lattice and provides no potential alloying benefits. The ONH836 utilizes a high-power
electrode furnace to quickly and efficiently release the target gases from within the sample, which allows
for a very rapid simultaneous determination of oxygen, nitrogen, and hydrogen.
山西分析仪价格长寿命的红外发射光源和无漂移的电路设计保证红外检测池的长期稳定性。
Method Selection
Two methods are described in this application note; either method can be used to analyze iron, steel, nickel-, and cobalt-base alloys. The Precision Method is recommended for general use and will provide the best precision and accuracy throughout the typical O, N, and H concentrations found in this group of metals; approximate cycle time is 3.5 minutes. The Fast Track method can be used where speed of analysis is a critical component; for example, when molten metal is being sampled and results are required in the shortest possible time. This method will produce suitable results for most samples; approximate cycle time is 2.25 minutes. As noted above, sampling and sample preparation are key elements to accurate O, N, and Hdetermination as well. It is up to the user to determine which method best meets their needs.
Procedure – Powder/Chip Samples
Determine the instrument blank.
Press the Analyze button on the instrument screen again, the loading head slide-block will close and the lower electrode will open.
Clean the upper and lower electrode either manually or remove the crucible and press the analyze button to clean with an automatic cleaner if applicable.
Add approximately 0.05 g of *** Graphite Powder to a 782-720 Graphite Crucible.
Firmly place the crucible on the lower electrode tip or appropriate autoloader position.
Instrument calibration/drift correction
f. Clean the upper and lower electrode manually, or, if applicable, remove the crucible and press the analyze button to clean with the automatic cleaner.
g. Firmly place a graphite crucible on the lower electrode tip.
h. Press the Analyze button on the instrument screen, the lower electrode will close and the analysis sequence will start and end automatically.
i. Repeat steps 3b through 3h a minimum of three times for each calibration/drift standard used.
. Calibrate/drift following the procedure outlined in the operator's instruction manual.
氧氮氢分析仪选哪家?给您推荐上海禹重!广东进口分析仪采购
Procedure - Solid Samples
Instrument calibration/drift correction.
Place the calibration/drift standard in a *** Nickel Basket, and if applicable, place the sample into the appropriate autoloader position.
Press the Analyze button on the instrument screen. After a short delay, the loading head slide-block will open.
Note: samples using automation should be placed in the appropriate autoloader position before starting the
analysis sequence. Once the sequence has started, the automatic analysis will start and end automatically.